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Abstract

The width of plate-boundary fault rupture at the Cascadia subduction zone, a dimension related to earthquake magnitude, remains

uncertain because of the lack of quantitative information about land-level movements during past great-earthquake deformation cycles.

Beneath a marsh at Alsea Bay, on the central Oregon coast, four sheets of tsunami-deposited sand blanket contacts between tidal mud

and peat. Radiocarbon ages for the sheets match ages for similar evidence of regional coseismic subsidence and tsunamis during four of

Cascadia’s great earthquakes. Barring rapid, unrecorded postseismic uplift, reconstruction of changes in land level from core samples

using diatom and foraminiferal transfer functions includes modest coseismic subsidence (0.470.2m) during the four earthquakes.

Interpretation is complicated, however, by the 30–38% of potentially unreliable transfer function values from samples with poor analogs

in modern diatom and foraminiferal assemblages. Reconstructions of coseismic subsidence using good-analog samples range from

0.4670.12 to 0.0970.20m showing greater variability than implied by sample-specific errors. From apparent high rates of land uplift

following subsidence and tsunamis, we infer that postseismic rebound caused by slip on deep parts of the plate boundary and (or)

viscoelastic stress relaxation in the upper plate may be almost as large as coseismic subsidence. Modest coseismic subsidence 100 km

landward of the deformation front implies that plate-boundary ruptures in central Oregon were largely offshore. Ruptures may have

been long and narrow during earthquakes near magnitude 9, as suggested for the AD 1700 earthquake, or of smaller and more variable

dimensions and magnitudes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Despite consensus that the history of the Cascadia
subduction zone includes plate-boundary earthquakes of
magnitude 9 (M9; Clague et al., 2000a; Goldfinger et al.,
2003; Satake et al., 2003; Kelsey et al., 2005; Satake and
Atwater, 2007; Fig. 1), Cascadia’s earthquake hazard is
uncertain. For example, in southern Cascadia great earth-
quakes in the lower magnitude 8 range may be more
frequent than earthquakes near M9—or evidence of M8
e front matter r 2008 Elsevier Ltd. All rights reserved.
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earthquakes and accompanying tsunamis may simply be
better preserved than in northern Cascadia (Nelson et al.,
2006). Paleoseismology of the past two decades sought to
infer past earthquake magnitudes through estimates of
rupture length (e.g., Atwater et al., 1991; Nelson et al.,
1995), but rupture width is an equally critical aspect of
geophysical models of the next great Cascadia earthquake.
Forecasts of earthquake ground motions that will strike
cities of central western North America are calculated from
the closest approach of earthquake rupture zones (Frankel
et al., 2002). Although modeling of plate-boundary rupture
zones has improved dramatically over the past two decades
(Hyndman and Wang, 1995; Wang et al., 2003), the inland
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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Fig. 1. Major features of the Cascadia subduction zone (modified from

Atwater and Hemphill-Haley, 1997; Clague, 1997) showing the location of

Alsea Bay on the central Oregon coast. The trace of the Cascadia thrust

fault (barbed line) is placed at the bathymetric boundary between the

continental slope and abyssal plain. Dots mark sites with evidence of

subsidence and (or) tsunamis accompanying Cascadia subduction-zone

earthquakes (Atwater et al., 1995, 2005; Clague et al., 2000b; Satake et al.,

2003; Williams et al., 2005).
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extent of ruptures during earthquakes of differing magni-
tude remains uncertain, partly because of the lack of
quantitative information about land-level movements
during past earthquake deformation cycles. Modelers agree
that ruptures extending well beneath the coast would cause
substantial sudden subsidence along much of the Cascadia
coast, whereas little subsidence would accompany offshore
ruptures (Wells et al., 2003; Leonard et al., 2004).

Mapping the width of past great-earthquake ruptures at
Cascadia requires quantitative estimates of coseismic
coastal subsidence. Previous estimates of subsidence for
most Oregon coastal sites, collected during reconnaissance
studies in the late 1980s and early 1990s, are based largely
on qualitative or semi-quantitative field data (e.g., Leonard
et al., 2004), some of which are probably unrelated to land-
level movement during earthquake cycles (Long and
Shennan, 1998; Nelson et al., 1998). Abrupt lithologic
changes in wetland cores and outcrops may reflect either
sudden subsidence during great earthquakes, with or
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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without deposition of sandy sediment by tsunamis, or
local hydrographic changes in estuaries induced by large
storms, floods, or slow sea-level rise (Nelson et al., 1996a;
Witter et al., 2001). Microfossils—such as pollen, diatoms,
or foraminifera—in tidal sediment are studied as quanti-
tative archives of relative sea-level change that help
distinguish seismic from nonseismic sea-level changes
(Shennan et al., 1998; Denys and de Wolf, 1999; e.g.,
Hughes et al., 2002a; Sawai et al., 2004a; Shennan and
Hamilton, 2006). Such biostratigraphic methods have been
applied at less than a quarter of the more than 35 Cascadia
estuaries; statistically supported studies with errors on past
subsidence events of o0.5m are limited to five estuaries.
In the late 1990s, application of transfer function

analysis—widely used on microfossils from deep marine
cores to reconstruct climate change—revitalized studies of
Holocene sea-level change, particularly in northwest
Europe and eastern North America (e.g., Zong and
Horton, 1999; Gehrels, 2000; Horton and Edwards,
2006). As first demonstrated at Cascadia with foraminiferal
data from marshes of Vancouver Island (Guilbault et al.,
1995, 1996), this statistical approach at least doubles the
precision of estimates of sudden coseismic subsidence.
With sufficient sample density, it also provides a contin-
uous record of relative sea-level change during interseismic
parts of the earthquake cycle—essential information for
understanding the mechanics of plate-boundary ruptures in
subduction zones (Long and Shennan, 1994; Atwater et al.,
2004b; Natawidjaja et al., 2004; Sawai et al., 2004b;
Hamilton et al., 2005; Shennan and Hamilton, 2006). Only
in the past few years have such transfer functions been
applied to earthquake and tsunami history on Cascadia’s
US coasts (Sabean, 2004).
In this paper, we map and date tidal lithofacies

interrupted by sand sheets deposited by the tsunamis of
Cascadia’s four most recent great earthquakes on the
eastern shore of Alsea Bay, at coastal Oregon’s center
(Fig. 1). The Alsea Bay site fills a gap—extending 25 km
north and 52 km south—in estuarine archives of Cascadia
earthquake history (Darienzo and Peterson, 1995). We
apply transfer function analysis using diatoms and
foraminifera from a tidal marsh core at the site to
reconstruct elevation changes, especially amounts of
coseismic subsidence during the earthquakes. Subsidence
estimates of 0.470.2m combined with earlier geophysical
modeling of plate-boundary deformation imply that during
the past 2000 years the plate-boundary in central Oregon
has largely ruptured offshore.
Tidal marshes, whose sediment preserves stratigraphic

evidence of regional coseismic subsidence and tsunamis,
line the northeastern and southeastern shores of Alsea Bay
and extend 8 km up the Alsea River (Fig. 2A; Peterson and
Darienzo, 1996; Priest and Allan, 2003). Although former
shallow tidal channels were widened and deepened in the
early twentieth century, the marshes we studied north of
the deepened channels (Fig. 2B) are mostly undiked and
little disturbed. The marshes face plentiful sources for
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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tsunami-deposited sand: the low, 2-km-long sand spit that
separates the west shore of the bay from the sea, and sand-
floored channels hundreds of meters wide in the central
part of the bay (Fig. 2A).

2. Lithostratigraphy

Tidal sediment beneath the marshes of eastern Alsea Bay
(Figs. 2–5) records great plate-boundary earthquakes and
accompanying tsunamis (Darienzo et al., 1994; Peterson
and Darienzo, 1996). The sharp (p10mm) to abrupt
(p1mm) contacts between muddy or sandy tide-flat
sediment and underlying peaty sediment of former marshes
(termed ‘‘peat–mud contacts’’, Nelson et al., 1996a; or
‘‘peat–sand contacts’’, Nelson et al., 2004; Figs. 4 and 5)
are the most widely used criterion to infer sudden,
coseismic sea-level changes caused by flexure of the upper
plate of the subduction zone during plate-boundary earth-
quakes (Nelson et al., 1996a; e.g., Peterson et al., 2000;
Witter et al., 2003). Variations in the sharpness of contacts,
their lateral extent, and the range of contact-bounding
lithologies, however, suggest that some sharp and most
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gradual contacts reflect local nonseismic changes in rates of
sedimentation, erosion, marsh development, and relative
sea-level rise (e.g., Nelson et al., 1996b, 2004; Shennan et
al., 1998; Allen, 2000). We examined lithostratigraphy in
25-mm-diameter cores throughout the marshes to evaluate
four of the five criteria of Nelson et al. (1996a) for inferring
coseismic subsidence from marsh stratigraphic sequences:
the suddenness of submergence; the amount of submer-
gence; the lateral extent of submerged tidal-wetland soils;
and the coincidence of submergence with tsunami deposits.
The fifth criteria, the degree of synchronicity of submer-
gence events, is discussed more fully by Nelson et al.
(2006).

2.1. Marsh cores

Of the 44 gouge cores and two vibrocores that we
examined in the marshes of eastern Alsea Bay (Fig. 2), 23
were described in detail (9–19 (1s range) stratigraphic units
per meter of core) using the widely used Troels-Smith
system (Troels-Smith, 1955; Long et al., 1999) for
describing organic-rich sediments. Ten of the 23 cores
34
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Fig. 3. Locations of gouge cores, vibrocores, modern samples of diatoms and foraminifers (Fig. 8; Tables SD1 and SD2), and exposures along and near

transect 1 (Fig. 2B). The locations of a 0.5� 0.5-m pit, 0.5m deep, 2m southwest of core V1 and a 1.5� 2-m pit, 1.5m deep, 1m south of core 12 are also

shown. Core 13 and modern samples 17–19 were collected on the east edge of the high marsh where freshwater is intermittently ponded against the forested

hillslope. Exposures 1 and 2 are along a drainage ditch.
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were photographed. Nineteen other cores were described in
less detail, noting mostly major lithologies, macrofossils,
and characteristics of sandy units and their contacts. Only
9 of the 44 cores reached depths of 4–5m. Peterson and
Darienzo (1996) described three 2.5–4.5-m long cores from
the same marsh, spaced 270–620m apart (area of Fig. 2B).
Twenty 1–1.5-m-high outcrops along the North Channel
and its inlets were also described or photographed for
comparison with the 62 channel outcrops and 13 other
cores studied by Peterson and Darienzo (1996, their
Figs. 46 and 47) in Alsea River marshes to the south and
southeast. Most of our core sites, outcrops, and bench-
marks were located to within 3m on enlargements of true-
color air photographs (1:13,000 scale). We used a laser
ranger to measure distances among core sites (error
70.5m; Fig. 2).

Mean tide level (MTL) at transect 1 was estimated by
measuring the elevations of low tides (on 3 days) and high
tides (on 2 days) relative to a temporary transect bench-
mark. We then compared the measurements with the
predicted tide level at Waldport (National Ocean Service,
1987), 2.6 km to the west (Fig. 2), and interpolated between
the temporary tide gauge measurements of Goodwin et al.
(1970, their Fig. 7, 25 days of tidal records at Waldport and
at a site 6 km east of our study site) to correct our estimates
of MTL (+44mm), MHHW (+12mm), and MLLW
(+98mm) relative to the Waldport tide gauge. The
elevations of transects 2 and 3 relative to MTL at transect
1 were estimated by simultaneously measuring the
elevation of high tide on each transect (error o30mm).
Elevations of core sites along transects (Figs. 3–5) were
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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measured using an automatic level (transect 1; error
78mm) or rotating laser level (transects 2 and 3; error
o20mm).

2.2. Sand sheets

Four sheets of sand (labeled A–D, Figs. 4 and 5) in the
upper 2m of tidal sediment beneath the marshes of eastern
Alsea Bay have characteristics typical of tsunami deposits
in other Cascadia marshes (Peterson and Darienzo, 1996;
e.g., Benson et al., 1997; Clague et al., 2000b; Witter et al.,
2003; Nelson et al., 2004; Williams et al., 2005; Schlichting
and Peterson, 2006) and so help confirm that the contacts
blanketed by the sheets coincide with great earthquakes.
Sand sheets A and B are found in 36 of 44 cores, whereas
sheets C and D were identified in 29 cores. The four sheets
appear in a core described by Peterson and Darienzo (1996)
about 150–300m south of transect 2 (Fig. 2B). All four
sheets can be correlated over the 850m between transects 2
and 3 (Figs. 2B and 5); sheets A and B have been mapped
from transect 2 eastward along the South Channel, a
distance of more than 2 km (Fig. 2A; Peterson and
Darienzo, 1996). Sheet thicknesses are highly variable
in cores (Table 1, Figs. 4 and 5), exposures near the
upper edge of the marsh, and outcrops along Alsea
River channels. Lower sandy beds of sheets consist of
clean to slightly muddy, fine-to-very-fine sand (measure-
ments by Peterson and Darienzo (1996) show 58–88% sand
in some of these beds). The beds grade upward into slightly
muddy to muddy, very-fine to extremely fine, sand and
coarse silt.
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,

1

dx.doi.org/10.1016/j.quascirev.2008.01.001


ARTICLE IN PRESS

40 30 20 10 0

0.0

0.5

1.0

1.5

-2.0

-1.5

-1.0

-0.5

P
R

E
S

E
N

T-
D

A
Y 

E
LE

VA
TI

O
N

 (m
) R

E
LA

TI
V

E
 T

O
 M

E
A

N
 T

ID
E

 L
E

V
E

L

MTL

MLLW

MHHW

-4.0

-3.5

-3.0

-2.5

5060708090100

WEST
Forested
   hillslope

EASTDISTANCE (m)

SYMBOLS
detrital plant fragment
Triglochin maritima rhizome
freshwater peat
fining-upward sandy bed
peat-sand or peat-mud contact
age in 14C years BP x1000

Upland A horizon
Peat
Muddy peat
Sandy peat
Peaty mud
Rooted mud
Mud
Muddy sand
Sand

SIMPLIFIED LITHOLOGY

F

C 2
1.4 ka

V2 25 15

A

B

C

D

A

B

C
1

D

2

23 1 24 V1

1.0 ka

1.9 ka

2.8 ka

2.5 ka

26 2 12

0.8 ka

1.7 ka

13

F

storms?

weathered
hillslope
colluvium

F

F

F
storm?

storm?

sand bed
in pit

Fig. 4. Simplified lithology and correlation of contacts inferred to mark sudden rises in relative sea level caused by coseismic subsidence (sand beds and

peat–sand contacts labeled A–D; peat–mud contacts labeled 1 and 2) in cores along transect 1. Vertical dashed lines mark cores whose nonsandy

lithologies were not described in detail. Because sand A was not present at the unconformity at 0.47m depth in core V1, an equivalent section containing

sand A was sampled in a pit 2m southwest of core V1 (Fig. 3). Core elevations (relative to the National Geodetic Vertical Datum of 1929) were determined

by leveling (accuracy70.01m) to a temporary benchmark. Benchmark elevation and tide levels (MTL, mean tide level; MHHW, mean higher high water;

MLLW, mean lower low water) estimated as explained in text. Beds of sand too thin to map within sandy peat in cores 12 and 13 may have been carried

into the high marsh during storm tides.

A.R. Nelson et al. / Quaternary Science Reviews ] (]]]]) ]]]–]]] 5
Upper sand sheet contacts are gradational over several
millimeters or more. Root stirring of sheet sand into
muddy or peaty beds above sheets is infrequent but more
common in cores near the upland. Lower contacts of sheets
are universally abrupt (0.5–1mm) and commonly irregular
or broken, probably reflecting minor erosion of underlying
muddy sediment and rapid deposition of sand on well-
vegetated soils in middle and high marshes. In a few cores,
sand surrounds the stems of high-marsh plants. Where
sheets overlie black, crumbly A horizons of the upper edge
of the high marsh (Fig. 3), sand fills fractures and root casts
in the A horizons (e.g., core 11, Fig. 2). In cores that lack
one or more of the four sand sheets, we infer that abrupt,
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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peat–mud contacts mark sudden marsh subsidence at the
times sand sheets at similar stratigraphic levels were
deposited and preserved on other parts of former marshes
(Figs. 2B, 4, and 5).
Peterson and Darienzo (1996) discussed possible

nontsunami depositional origins for the four sand sheets:
river floods, storm tides, increases in regional sea level
caused by ocean current anomalies, and changes in tide
levels due to erosion of the sand spit at the mouth
of the bay. Using hypersthene ratios in heavy mineral
fractions to distinguish beach sand from river sand,
these authors showed that percentages of beach sand in
sandy beds and sand bed thickness decreased upriver in
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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Table 1

Thickness of four sand sheets beneath marshes in eastern Alsea Baya

Thickness (mm) Sand A Sand B Sand C Sand D

Upper muddy sand

Maximum 40 60 23 51

Mean 19711 (6) 33733 (17) 23718 (13) 24712 (9)

Lower clean sand

Maximum 126 265 35 106

Mean 41731 (18) 128772 (29) 27715 (13) 51728 (21)

Total bed

Maximum 126 265 45 106

Mean 44732 (35) 145775 (41) 32715 (27) 67735 (27)

Number of cores (42 total) in which measurements were made in

parentheses.
aIn many cores, an upper muddy sand bed overlies a lower clean sand

bed. Mean shown at 1s.
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four cores spanning 3 km of Alsea River marshes. Current
velocities resulting from storm tides or tidal cycles
following sea-level changes are probably insufficient to
transport sand this distance inland. And because deceler-
ating river-flood currents are unlikely to deposit seaward-
thickening sand beds, deposition by tsunamis remains the
best explanation for the sand sheets (Peterson and
Darienzo, 1996).

Sedimentary structures in selected cores are evidence for
waning or variable current strength—a diagnostic char-
acteristic of tsunami deposits (Nanayama et al., 2000;
Clague et al., 2000b; Tuttle et al., 2004; Bourgeois et al.,
2006; Morton et al., 2007). Where beds are 420mm
thick, most sand fines upward from fine-to-very-fine
sand or from very fine sand to muddy sand. However, in
a few cores penetrating sheets A, B, and D, the coarsest
sand lies near the middle of the bed. About 5% of cores
show indistinct laminae a few millimeters thick in the upper
parts of beds. For example, in core 11 (Fig. 2), three
laminae of couplets of fine sand and muddy very-fine sand,
2–3mm thick, indicate rapidly changing flow regimes
during the deposition of sheet A. Evidence for two or
more distinct pulses of sand deposition is clear only for
sheet B, where 4100-mm-thick sandy beds in 12 of
the 44 cores contain two distinctly graded beds, some with
small mud or peat clasts near the base of beds. Clasts and
laminae of muddy sand 3–5-mm thick between thicker beds
of clean fine sand are evidence that sheet B in cores 10, 11,
and 23 (Figs. 2 and 4) records two distinct pulses of
deposition. For other sand sheets, only one or two cores
show grading distinct enough to reflect multiple pulses of
deposition.

Diatom and foraminiferal assemblages in the sand sheets
are also consistent with deposition by tsunamis. As in all
our core samples, the most abundant diatom taxa in sandy
samples (4–69%) is Paralia sulcata, a decay-resistant,
tychoplanktonic, marine-to-brackish species whose chain-
like growth form ensures its wide dispersal (Crawford,
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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1979; Sawai et al., 2005). Diatoms typical of sandy tide
flats, such as Planothidium delicatulum, Dimeregramma

minor, and Fallacia cryptolyra, are the next most common
species in sandy samples from core V1 (Fig. 6), but diatom
valve concentrations are very low. Similar low-concentra-
tion diatom floras characterize some tsunami deposits
elsewhere in Oregon and Washington (Hemphill-Haley,
1995, 1996) and Japan (Sawai, 2002; Soeda et al., 2004).
The two foraminiferal samples from sheet B have so few
foraminiferal tests (4–11 tests/mL; Fig. 7) that percentage
data are not meaningful. A foraminiferal test of Eggerella

advena, a subtidal species, in one of the samples is
consistent with landward transport of subtidal sediment
(e.g., Guilbault et al., 1996).
Laminae of fine-to-very-fine sand that are too thin

(1–5mm thick), discontinuous, or deformed to form
extensive sheets occur within some peaty or muddy units,
particularly in the upper 1m of cores near the upper edge
of the marsh. Sand in such laminae may have been
transported by storm waves during extreme tides (e.g.,
Hemphill-Haley, 1995) or by tsunamis from distant
subduction zones (e.g., Witter et al., 2001). The sandiest
laminae, for example in the upper 0.25m of cores 6, 12, and
13 (Figs. 2, 4, and 5), might have been deposited at the time
of the great Alaskan earthquake of 1964, whose tsunami
reached a height of 3.5m in Yaquina Bay, 20 km north of
Alsea Bay (Witter et al., 2001, their Fig. 4).

2.3. Other peat–mud contacts

We evaluated two other sharp peat–mud contacts, which
lack sandy beds at similar stratigraphic levels: contact 1
just below sheet B at an elevation of �0.3m and contact 2
at an elevation of �2.6m (in core V1, Figs. 4, 6, and 7).
Contact 1 abruptly (o1mm) separates mud to slightly
peaty mud from underlying rust-colored, high-marsh peat;
a stratigraphy caused by a sudden increase in water level or
sedimentation rate. Diatom and foraminiferal evidence is
inconsistent in suggesting both a rise and fall of sea level
across contact 1 (discussed in Section 4.5). Although
contact 1 is distinct in two-thirds of cores near transect 1,
we could not identify a similar contact in most cores on
transects 2 and 3, or in outcrops south of transect 3 and
along the main Alsea River channel. For this reason,
contact 1 has too limited an extent to infer sudden, marsh-
wide subsidence. The contact may record a small rapid
change in tide levels, perhaps induced by changes in river
channels or the configuration of the spit at the mouth of
the bay, which affected tide levels in different parts of the
Alsea Bay marshes in different ways.
The lithologic contrast across contact 2 in some cores

(nos. 2, 4, 5, 7, 8, 12, 18, Figs. 2 and 3)—rooted mud over
rust-colored, high-marsh peat—suggests a greater relative
sea-level rise than across contact 1. Contact 2 may correlate
with peat–mud contacts in cores along the Alsea River
inferred by Peterson and Darienzo (1996) to record sudden
subsidence during a great earthquake. But the contact is
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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gradual (410mm) in some cores, lacks sand in all cores,
has diatom evidence for only 0.2170.11m of submergence
(discussed in Section 4.5), and was identified in too few
cores for us to be confident of its lateral extent. For these
reasons, determining the regional significance of contact 2
will require its more detailed mapping at Alsea Bay, and
identification and dating at sites to the north and south
(e.g., Nelson et al., 1996a).

3. Radiocarbon dating and correlation

Most 14C-dated fossils from the four sand sheets and
contact 2 (Table 2) are detrital and so provide only maximum
ages for the times when marshes were suddenly submerged
and covered with sand or mud. In addition to stratigraphic
context, the type of fossil, its likelihood of transport, and its
resistance to decay were considered in selecting samples
thought to predate (‘‘close maximum’’) or postdate (‘‘close
minimum’’) sheets and contact 2 by no more than a few
decades. Peterson and Darienzo’s (1996, their Fig. 53) 14C
ages from peaty units in a core 1.2 km southeast of transect 3
are difficult to evaluate: the ages have large analytical errors
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy

USA. Quaternary Science Reviews (2008), doi:10.1016/j.quascirev.2008.01.00
and are on bulk peat, so the ages may predate marsh
submergence and tsunamis by many hundreds of years (e.g.,
Nelson, 1992; Hamilton et al., 2005).
Nelson et al. (2006) correlated sand sheets A–D and

contact 2 (labeled E in Fig. 2 of Nelson et al., 2006) with
records of coseismic coastal subsidence and tsunamis to the
north and south. Sheet A was almost certainly deposited by
the tsunami from the great earthquake of 26 January AD
1700, which apparently ruptured much of the subduction
zone (Satake et al., 2003; Atwater et al., 2005). Sheet B ages
probably date a great earthquake and tsunami about 0.8 ka
(ka, median of calibrated 14C age in solar years BP rounded
to nearest century; Table 2), younger than but within the
large age uncertainties for tsunami beds in northern
Oregon (Schlichting and Peterson, 2006) as well as the
second most recent great earthquake in southwest Wa-
shington (Atwater et al., 2004a). If younger than the
Washington earthquake, sheet B may record a tsunami
from an earthquake rupture that broke only part of the
subduction zone (Witter et al., 2003; Nelson et al., 2006).
The only ages (two maximums) for sheet C show an
age of o1.4–1.0 ka and, thus, a correlation with a great
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,

1
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earthquake, precisely dated at 1.3–1.2 ka in southwest
Washington (Atwater et al., 2004a), and less precisely at
other sites in southern Oregon. Maximum and probable
minimum ages for sheet D (Table 2) limit its age to the time
of an earthquake with a similarly long rupture, dated at
1.6–1.5 ka in southwest Washington. Ages above and
below contact 2 allow correlation with similar contacts of
about this age inferred to record subsidence during a
great earthquake about 2.9 ka (Atwater et al., 2004a;
Nelson et al., 2006).

4. Microfossil-based paleogeodesy

Mapping patterns of coseismic deformation at Cascadia,
as a means of estimating the rupture dimensions of plate-
boundary earthquakes, requires quantitative measures of
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy

USA. Quaternary Science Reviews (2008), doi:10.1016/j.quascirev.2008.01.00
coastal vertical deformation. Where the elevational depen-
dence of fossil assemblages has been defined through
quantitative studies of modern plant and animal commu-
nities, precise estimates of elevation change, inferred from
changes in relative sea-level, can be made (e.g., Hamilton
and Shennan, 2005a). Measurements of the permanent
submergence (relative sea-level rise) caused by coseismic
subsidence come from studies of stratigraphic changes
in macro- and microfossil assemblages across sharp
peat–mud and peat–sand contacts (e.g., Nelson et al.,
1996a; Shennan et al., 1996; Atwater and Hemphill-Haley,
1997). A succession of statistical methods has been applied
to tidal microfossil datasets for reconstructing Cascadia
relative elevation change (e.g., Whiting and McIntire, 1985;
Hemphill-Haley, 1995; Nelson et al., 1996b; Shennan et al.,
1998; Patterson et al., 2005), with results from transfer
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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function analysis being the most objective and precise (e.g.,
Guilbault et al., 1995, 1996; Hughes et al., 2002a; Sabean,
2004).

Transfer function analysis of microfossil assemblages
has been widely used to reconstruct relative sea-level
changes recorded in tidal sediment (e.g., Horton et al.,
1999b; Shennan et al., 1999; Zong and Horton, 1999;
Gehrels, 2000; Gehrels et al., 2001; Sawai et al., 2004a;
Horton and Edwards, 2006; Shennan and Hamilton, 2006).
A training set of modern microfossil data, from transects
extending from tide flat to forested upland, is analyzed to
determine relations among the abundances of species and
the independent variable elevation (relative to MTL). The
relations are then used to reconstruct past changes in
elevation using fossil assemblages in cores, assuming no
change in sea level. Transfer functions have the substantial
advantage over earlier quantitative and semi-quantitative
methods (e.g., Nelson and Kashima, 1993; Hemphill-
Haley, 1995; Kelsey et al., 2002) of continuously modeling
sea-level change (including sample-specific errors) through-
out earthquake cycles (Long and Shennan, 1994; Zong
et al., 2003; Sabean, 2004; Hamilton and Shennan, 2005b).

At Alsea Bay we apply transfer function analysis to two
complementary microfossil groups—diatoms and forami-
nifera—to estimate the amount of submergence at the
times that sand sheets A–D and contacts 1 and 2 formed.
Diatoms are small (10–200 mm), abundant, resistant to
decay, and sensitive to tidal inundation and salinity, but
are easily transported and so may be allochthonous
(reworked). Foraminifera are large (50–2000 mm) and so
less likely to be allochthonous, but are less resistant to
decay and may be infaunal (burrow into sediment). There
are many hundreds of common tidal diatom species, but
only a few tens of common tidal foraminiferal species.
Assemblages of both types of taxa may be modified by
poorly understood ecologic and taphonomic processes
(Goldstein and Watkins, 1999; Sawai, 2001; Patterson et
al., 2004). Analysis of fossil assemblages from multiple
microfossil groups reduces interpretive problems encoun-
tered when using only one group (e.g., Nelson et al., 1996b;
Shennan et al., 1998; Gehrels et al., 2001; Hughes et al.,
2002a; Patterson et al., 2005).

4.1. Diatom sampling and analysis

Modern and fossil samples counted for diatoms included
21 1-ml samples from 0 to 2 cm depth along transect 1
(modern samples 0–20 on Fig. 3) and 90 3–5-mm-thick
samples from the upper 4m of core V1 and two nearby
hand-dug pits (Fig. 3; Table SD1). About 20mg of dry
sediment from each sample was cleaned with sodium
hypochlorite solution, centrifuged in water, and dried on a
slide (methods and autecology as described by Sawai,
2001). At least 300 diatom valves were counted under an
oil-immersion microscope; fragments containing more than
half a valve were included in the count. We identified 80
taxa in 34 genera in the modern samples and 148 taxa in 68
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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genera in the fossil samples. Sawai and Nagumo (2003)
describe the taxonomy of and illustrate modern taxa of the
Alsea Bay flora.

4.2. Foraminiferal sampling and analysis

Modern samples counted for foraminifera included 20
20-ml samples from 0 to 2 cm depth along transect 1
(samples 1–20 on Fig. 3) and 20-ml samples from 2 to
10 cm depth from 9 of these sites (Fig. 8). Fossil samples
included 23 10-mm-thick, 10-ml samples from core V1 and
the pit 2m from it (Fig. 3; Table SD2). Standard
preparation methods included staining of modern samples
with rose bengal mixed with methanol to determine the
foraminifers living at the time of collection, wet sieving at
63 mm to isolate the sand fraction, and careful decanting of
organic material to facilitate counting and identification.
Representative samples containing 250–400 foraminifers
were obtained by wet splitting and counted in a methanol
and water solution. Except for one modern sample from
the upland (total of 28 tests), one from the high marsh
(16 tests), and three fossil samples from tsunami-deposited
sand (7–57 tests), we counted 4100 living plus dead
foraminifers in each sample. We identified seven species in
the modern samples and 10 tidal species in the fossil
samples; small numbers of planktonic species in four fossil
samples were excluded from the total count. All compar-
isons of modern assemblages with fossil assemblages used
only percent dead foraminifera (living foraminifers ex-
cluded) because dead assemblages best reflect the long-term
effects of taphonomic processes (Horton, 1999; Murray,
2000; Patterson et al., 2005). Counts of dead tests ranged
from 35 to 420 (mean 165) in the modern samples to
73–571 (mean 228) in fossil samples.
Over the past two decades, studies of tidal foraminifers

have demonstrated important taphonomic effects on
foraminiferal assemblages as deep as 60 cm below the
surface of some tidal marshes. Variability in the spatial
distribution of assemblages leads some investigators to
conclude that surface samples (1-cm thick) of foraminifera
are not necessarily representative of tidal environments.
Elevational dependence of fossil assemblages may be
obscured by seasonal, inter-seasonal, and interannual
differences in assemblages due to ecologic or diagenetic
factors, such as changes in pore-water chemistry, as well as
by infaunal migration of some species to depths of tens of
centimeters (Scott and Leckie, 1990; de Rijk and Troelstra,
1997; Ozarko et al., 1997; Goldstein and Watkins, 1999;
Patterson et al., 1999, 2004; Hippensteel et al., 2002;
Horton and Edwards, 2003; Martin et al., 2003). Some
advocate analysis of 10-cm-thick samples to capture
infaunal as well as epifaunal species (Ozarko et al., 1997;
Goldstein and Watkins, 1999; Patterson et al., 1999). But
analysis of 10-cm-thick samples obscures sea-level changes
spanning less than centuries (in all but the highest
sedimentation rate samples), and so would make forami-
niferal study of coseismically subsided marsh beds in cores,
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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which are typically 5–30mm thick, of little use. Other
studies have found only modest effects on assemblage
proportions due to infaunal migration and diagenesis, and
have successfully used surface samples as good modern
analogs in reconstructing sea-level change from fossil
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy

USA. Quaternary Science Reviews (2008), doi:10.1016/j.quascirev.2008.01.00
samples (Horton, 1999; Patterson et al., 2004; Sabean,
2004; Horton and Edwards, 2006).
To test for the effect of infaunal migration and

diagenesis at Alsea Bay, we combined percentage and
concentration data from depths of 0–2 and 2–10 cm for
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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paired samples at nine locations along transect 1 to obtain
species percentages for 20-ml samples spanning a depth
range of 0–10 cm (Fig. 8). Comparison of dead species
percentages from depths of 0–2 cm with those from depths
of 0–10 cm shows that infaunal migration affects—but
probably does not seriously compromise—paleoenviron-
mental reconstruction using foraminifera from core V1
(Fig. 8). Greater percentages of Jadammina macrescens in
deep samples at three high-marsh stations probably reflect
the infaunal migration documented for this species in
several studies cited above; percentages of the epifaunal
species Miliammina fusca are similar in samples from both
depth ranges. Q-mode cluster analysis (software of
Hammer et al., 2006) of 0–2 and 0–10-cm data yielded
similar clusters (e.g., Patterson et al., 2004).

4.3. Transfer function analysis

We follow recent studies (e.g., Zong and Horton, 1999;
Gehrels et al., 2001; Hughes et al., 2002a; Horton and
Edwards, 2003; Sawai et al., 2004a, b; Hamilton and
Shennan, 2005a; Horton and Edwards, 2006) in using the
statistical methods reviewed by Birks (1995) with the
software of Juggins (2003) to compare various transfer
function models for reconstructing elevation change
(relative to MTL) from diatom and foraminiferal data
(Fig. 9). The method develops relations among species
percentages in modern assemblages and elevation that are
then used to estimate elevation for fossil assemblages from
core V1 (and for 28 samples from the pits next to cores V1
and 12, Figs. 3, 9, and 10).

To begin we use the modern analog technique (weighted
modern analog of Juggins, 2003) to learn which of the
fossil samples from the core have good-analog assemblages
in the modern samples from transect 1. Transfer function
results for fossil samples that have poor analogs in the
modern training set are suspect (Birks, 1995; e.g., Hughes
et al., 2002a; Hamilton and Shennan, 2005a). Unfortu-
nately, only 6 of 90 diatom samples from the core and none
of the 23 foraminiferal samples have good analogs using
the 5% minimum dissimilarity coefficient criteria proposed
by Hamilton and Shennan (2005a). The lack of good
analogs is probably due to the small number (20) of
modern samples from Alsea Bay, taphonomic problems in
comparing modern with fossil foraminiferal assemblages,
and the substantial percentages of some diatom species
in the modern samples not found in the fossil samples
(Table SD1).

To deal with insufficient modern analogs we expand the
modern data sets (e.g., Horton and Edwards, 2005). To the
Alsea Bay foraminiferal training set we add all but five low-
concentration samples (o11 tests/ml) from the three
southern Oregon transects reported by Jennings and
Nelson (1992). The tidal marsh settings of the additional
transect sites are much like the Alsea Bay marsh and
methods of sample preparation and analysis are identical.
Trochamminita salsa is an important foraminiferal species
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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in some Alsea Bay core samples (Fig. 7), but because we
did not recognize T. salsa during counting of the three
transects in 1987 we did not use this species in the transfer
function analysis (Table SD2; e.g., Jennings et al., 1995).
The resulting seven foraminiferal species make up 497%
of dead tests in modern assemblages and493% of the core
assemblage. Excluding small percentages of calcareous
species in the fossil samples from the analysis reduces
differences between core and modern samples due to
possible dissolution of calcareous tests (Edwards and
Horton, 2000). Because tidal range differs by 0–0.3m at
the four foraminiferal transect sites, we normalize sample
elevations using a standardized water level index (e.g.,
Horton et al., 1999a; Gehrels, 2000; Hamilton and
Shennan, 2005a).
To the Alsea Bay diatom training set we add percentage

data from 39 modern tidal samples from four sites in
southern Puget Sound (Sherrod, 2001). The new modern
training set includes species with values of 43% in any
sample for a total of 104 species, 48 of which occur in core
samples. Although the sheltered Puget Sound environ-
ments differ in some ways from the outer coastal estuarine
site at Alsea Bay, comparable modern diatom data is not
available from other Oregon estuaries. Sample preparation
procedures and taxonomy used by Sherrod (2001) are
similar to those of Sawai and Nagumo (2003) at Alsea Bay.
As with the foraminiferal samples, we normalize elevations
of the diatom samples to account for differences in tidal
range.
Transfer function models for the expanded diatom and

foraminiferal data sets use partial least squares weighted-
averaging regression with inverse deshrinking and
bootstrapping, as explained in Birks (1995), Gehrels et al.
(2001), Hughes et al. (2002a), Sawai et al. (2004a), Horton
and Edwards (2006), and references therein. Detrended
canonical correspondence analysis confirms that unimodal
statistics, as implemented by this type of regression, are
appropriate for both data sets (gradient lengths: diatoms,
2.4; foraminifera, 3.0; Birks, 1995). We use low values of
the root mean square error of prediction (RMSEP) and
high values of the coefficient of determination (r2) to select
the transfer function models most effective in reconstruct-
ing past elevations (Birks, 1995; Juggins, 2003; e.g., Horton
et al., 1999a; Hamilton and Shennan, 2005a). For each
data set, samples with residuals (normalized observed
elevation minus normalized predicted elevation) greater
than 1s of normalized elevation are not used in the models
(three foraminiferal samples, two diatom samples). Plots of
residuals help us eliminate an additional outlier from the
modern foraminiferal data set and two from the diatom
data set. Rerunning the modern analog technique on the
expanded training sets with outliers removed gives much
improved results: 56 of 90 diatom samples from the
core have good modern analogs, whereas 16 of 23
foraminiferal samples have good analogs (Fig. 9). For the
final models used to reconstruct elevation (Figs. 9 and 10),
coefficients of determination are r2=0.88 for diatoms
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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(RMSEP=0.15m) and r2=0.78 for foraminifera
(RMSEP=0.27m). Combining diatom and foraminiferal
data sets (e.g., Gehrels et al., 2001; Patterson et al., 2005) is
not an option because the core was sampled separately at
different levels for diatoms and foraminifera.
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy

USA. Quaternary Science Reviews (2008), doi:10.1016/j.quascirev.2008.01.00
4.4. Coseismic elevation changes

Reconstruction of changes in elevation at the site of core
V1 with the diatom and foraminiferal transfer functions
include modest subsidence (0.370.3m) during the past
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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Fig. 10. Detail of elevation changes reconstructed with transfer functions about the time sand D was deposited. Results for diatom samples from the pit

1m south of core 12 (Fig. 3) are shown below results from core V1. Symbols as in Fig. 9.
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four great earthquakes at Alsea Bay, but interpretation is
complicated by the 30–38% of potentially unreliable
transfer function values from samples with poor modern
analogs (Fig. 9). Transfer function values for samples from
tsunami-deposited sandy beds (triangles on Fig. 9) are not
meaningful in elevation reconstructions. For example,
abundant commonly allochthonous diatom taxa, such as
Paralia sulcata and the sandy tide-flat/subtidal species
Dimeregramma minor (Fig. 6), show that diatom assem-
blages in sandy samples are unrelated to tide levels.
Because the modest elevation changes resulting from the
transfer function analysis are no greater than the changes
produced by late Holocene relative sea-level changes
common to nontectonic coasts, the seismic land-level
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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changes we infer below are easily confused with nonseismic
sea-level changes (e.g., Nelson et al., 1996a; Shennan et al.,
1998; Hamilton and Shennan, 2005a). However, at Alsea
Bay the regionally correlative 14C ages (Table 2; Nelson
et al., 2006) for the tsunami-deposited sheets of sand on
contacts A–D support our inference that the contacts
coincide with Cascadia plate-boundary earthquakes and so
record coseismic changes.
At the deposition time of sand sheet A (AD 1700),

foraminifera show 0.4070.19m of subsidence whereas
diatoms yield only 0.1670.12m, even if the thickness
(0.06m) of tsunami-deposited sand is considered in
reconstructing postseismic elevation (Fig. 9; e.g., Guilbault
et al., 1996; Hughes et al., 2002b). However, poor-analog
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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samples—as at the top of sand A and bounding sand
B—make some subsidence estimates unreliable. Values
for good-analog diatom samples above sand B suggest
that deposition of this 0.2-m-thick bed did not raise the
level of the marsh above the pre-earthquake level,
which implies subsidence of at least 0.2m. Ignoring the
poor-analog diatom samples immediately above and below
sand B gives a measure of subsidence of 0.3670.12m
across the bed (dashed line in sand B on Fig. 9).
The foraminiferal samples from this part of the core have
poor analogs because they contain abundant Trochammi-

nita salsa, which is absent or present in much lower
proportions in the modern samples (Table SD2). Assuming
the diatom assemblage in the sample at the upper contact
of sand C (1.21m depth) is largely autochthonous
(unreworked), diatom assemblages yield almost twice
as much subsidence for the earthquake of about 1.3 ka as
foraminiferal assemblages (0.46m vs. 0.25m, Fig. 9),
although errors on reconstructions overlap. Similarly,
for the earthquake of about 1.6 ka, a mix of good-analog
and poor-analog foraminiferal and diatom samples
yield less subsidence (about 0.170.2m) across sand D in
core V1, whereas diatom samples across the same sand in
the pit 1m from core 12 suggest three times this amount
(Fig. 10).

Such variation in transfer function values emphasizes the
uncertainty in poor-analog sample values and shows
greater variability than implied by sample-specific function
errors. These results, in turn, emphasize the importance of
acquiring large modern data sets that sample a full range of
tidal environments and fossil analyses from multiple sites in
the same marsh, preferably using multiple microfossil
groups (e.g., Nelson et al., 1996b; Shennan et al., 1996;
Hamilton and Shennan, 2005a; Patterson et al., 2005), for
reconstructing land-level movement during earthquake
cycles.

4.5. Nonseismic elevation change

Are the transfer function reconstructions reasonable
measures of coastal subsidence due to plate-boundary slip
during great earthquakes, or do they fail, as postulated by
Hemphill-Haley (1995), to include additional components
of nonseismic land- and sea-level change, such as changes
in tidal range, coseismic sediment compaction, and
postseismic uplift or subsidence of the coast (Leonard
et al., 2004)? The broad, shallow configuration of Alsea
Bay and the gentle slope of present and former marshes on
its eastern shore probably resulted in minimal changes in
tidal range over the past 2000 years (e.g., Hughes et al.,
2002a). Because well-compacted Pleistocene sediment
probably lies o7m beneath core V1 and extensive river
channel exposures show no evidence of widespread
liquefaction, compaction of core sediments is probably
limited to the ubiquitous, gradual compaction of muddy,
organic-rich sequences on many coasts (e.g., Guilbault
et al., 1995; Allen, 2000; Shennan and Horton, 2002). In
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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any case, compaction only increases apparent coastal
subsidence (Horton and Edwards, 2006).
Our most reliable reconstructions imply that postseismic

uplift at Alsea Bay caused by slip on deep parts of the plate
boundary and (or) viscoelastic stress relaxation (Hyndman
et al., 2005; e.g., Hu et al., 2004; Sawai et al., 2004b; Uchida
et al., 2004; Chlieh et al., 2007; Wang, 2007) may be almost
as large as coseismic subsidence (Fig. 9). Geophysical
modeling of plate-boundary deformation shows that post-
seismic deep fault slip would increase subsidence at central
Oregon sites, 100 km inland from the Cascadia deformation
front (Fig. 1), whereas uplift from viscoelastic relaxation
would reduce it (Hyndman et al., 2005; Wang, 2007). As did
Guilbault et al. (1996), Hughes et al. (2002a), and Hamilton
and Shennan (2005a), we infer that transfer function values
differenced across contacts in core V1 include postseismic
effects occurring within a few years of earthquakes. Because
tsunamis deposited the four sand sheets on subsided Alsea
Bay marshes within minutes to hours following great
earthquakes, the overlying muddy beds (into which all the
sheets grade, e.g., Fig. 10) probably began accumulating
within hours to days of an earthquake. High rates of
apparent uplift measured from good-analog samples im-
mediately above sand beds C and D support this assump-
tion. Differenced post-tsunami transfer function values give
ratios of elevation increase/sediment thickness just above
sand C of 32 (390mm of elevation increase over 12mm of
sediment thickness; diatoms) and 10 (foraminifera), and of
30 (diatoms) above sand D in the pit at core 12. Poor-analog
samples make similar calculations for other beds unreliable.
Hughes et al. (2002b) also inferred rapid uplift from similar
ratios obtained with transfer functions on fossil pollen
deposited on Vancouver Island following the AD 1700
earthquake. Although we cannot rule out unrecognized
postseismic movements within weeks following great earth-
quakes (Hyndman et al., 2005), the few reliable Alsea Bay
reconstructions suggest 0.470.2m of coseismic subsidence
followed by rapid recovery in the first few decades following
the earthquake. Wang (2007) calls on stress relaxation to
explain similar recovery following great earthquakes of the
past century in other subduction zones.
Other investigators have reported microfossil evidence of

slow sea-level rise that is increasingly interpreted as decades
of slight subsidence prior to great plate-boundary earth-
quakes, as predicted by models of the earthquake
deformation cycle in subduction zones (e.g., Long and
Shennan, 1998; Shennan et al., 1998, 1999; Zong et al.,
2003; Hamilton et al., 2005; Hawkes et al., 2005; Shennan
and Hamilton, 2006). At Alsea Bay, our sampling is too
limited and transfer functions too imprecise to argue for or
against preseismic subsidence. Small and inconsistent
apparent decreases in relative elevation beneath the sand
sheets (e.g., Fig. 10) may reflect mixing of taxa from
assemblages above the contacts or small local-to-regional
accelerations in sea-level rise caused by nontectonic
processes (Fig. 6; e.g., Nelson et al., 1996b, p. 151;
Hamilton et al., 2005).
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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Transfer functions are inconsistent in yielding both
subsidence (diatoms, 0.3770.11m) and uplift (foramini-
fera, �0.0470.19m) across contact 1. Across contact 2,
diatoms show subsidence of 0.2170.11m, but even this
change is less than some reconstructed changes where core
lithology is uniform or changes gradually, for example near
2.4m depth (Fig. 9). For the changes across contacts 1 and
2, our data cannot distinguish between coseismic relative
sea-level changes and local-to-regional sea-level changes
unrelated to land-level movements during earthquake
cycles (e.g., Nelson et al., 1998; Allen, 2000; Hamilton
and Shennan, 2005b).

5. Great-earthquake rupture dimensions and magnitudes

Unless substantial postseismic rebound was too rapid to
be recorded, reconstructions of land-level change at Alsea
Bay indicate modest (0.470.2m) coseismic subsidence
inconsistent with wide plate-boundary ruptures extending
well inland of the coast (e.g., Hyndman and Wang, 1995).
Leonard et al. (2004) compared qualitative to semi-
quantitative tidal wetland evidence of coseismic subsidence
with amounts of subsidence predicted by the elastic
dislocation models of Flück et al. (1997) and Wang et al.
(2003) for great earthquakes with 800 and 550-yr strain
cycles and variable slip (Fig. 11). A compilation of less
detailed evidence for pre-AD-1700 great earthquakes gave
almost identical results for the central Oregon coast
(Hyndman et al., 2005). Our estimates of coseismic
subsidence fall in the middle range of Leonard et al.’s
(2004) mean subsidence values near Alsea Bay. The
estimates encompass the 550 and 800-yr strain cycle
models (A, Fig. 11) and best fit modeled earthquakes with
o30m of plate-boundary slip (B, Fig. 11).

Coseismic subsidence estimates from other statistically
supported microfossil studies in central Cascadia are
mostly o1m (Fig. 11), and best fit models of largely
offshore coseismic rupture. For example, recent transfer
function results using logarithms of foraminiferal species
concentrations record only 0.6–1.0m of subsidence during
the past four plate-boundary earthquake cycles in northern
Willapa Bay (Fig. 1), although Sabean (2004) interprets
these as minimum values. At Coos Bay, analysis of
foraminiferal data gathered in the 1980s (Nelson et al.,
1996b) with the same transfer function (modern training
set) used here (87% of Coos Bay fossil samples have good
modern analogs) yields subsidence of 0.770.3m during the
two largest earthquakes of the past 2000 years (Fig. 11).
Current interseismic GPS data and historical tide gauge
and leveling-line data are also consistent with the locked
portion of the plate boundary, inferred to coincide with the
rupture zone, lying offshore in central Oregon (Wang et al.,
2003; Yoshioka et al., 2005; Schmidt et al., 2007). Wells et
al. (2003) reached similar conclusions about the inland
extent of ruptures at Cascadia through a comparison of
historical great-earthquake rupture zones and forearc basin
distribution in other subduction zones.
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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Narrow, offshore rupture zones in central Oregon might
reflect plate-boundary earthquakes of variable dimensions
and magnitudes. Long narrow ruptures, with unusually
large length-to-width ratios (410), imply earthquakes near
magnitude 9. Precise radiocarbon dating and tree-ring
records from earthquake-killed trees suggest a rupture of
4900 km for the AD 1700 earthquake (Atwater et al.,
2005; Nelson et al., 2006) and inversions of reconstructions
of the accompanying tsunami on Japan’s east coast
yield magnitudes in line with such a rupture length
(M8.7–9.2; Satake et al., 2003). For some earlier great
earthquakes at Alsea Bay, subsidence of 0.470.2m might
be more easily explained by ruptures of more limited
north–south extent and lower magnitude (e.g., Nelson and
Personius, 1996; Satake et al., 2003, their Fig. 8; Witter
et al., 2003; Nelson et al., 2006; Satake and Atwater, 2007).
Earthquakes whose rupture widths decreased as they
approached Alsea Bay from the north or south, or
earthquakes in central Oregon with modest rupture areas
(low M8 range) are also consistent with 0.470.2m of
coseismic subsidence.
Such variability in rupture dimensions might explain

differences in coastal subsidence from one earthquake to
the next. Incomplete strain release during plate-boundary
earthquakes, as postulated to explain earthquakes of
variable magnitude at other subduction zones (e.g., At-
water et al., 2004b; Natawidjaja et al., 2004; Cisternas et
al., 2005; Briggs et al., 2006), is another likely explanation
for differences in coseismic subsidence (Hyndman et al.,
2005). For example, if the 0.270.2m of subsidence
measured across sand D in the core (average of three
values) is accurate (Figs. 9 and 10), the great earthquake of
about 1.6 ka could have released less accumulated plate-
boundary strain than at least two of three later earth-
quakes. In the case of the 1.6-ka earthquake, however, the
wide distribution of evidence for substantial coseismic
subsidence (�1m) about 1.6 ka is less consistent with a
partial-strain-release earthquake of M8 than with an M9
earthquake that ruptured much of the subduction zone
(Nelson et al., 1996a; Fig. 11).

6. Conclusions

Four sheets of tsunami-deposited sand interrupt the
upper 2m of tidal peat and mud beneath marshes fringing
the eastern shore of Alsea Bay. The sheets have character-
istics typical of tsunami deposits and 14C ages that
correlate with ages for evidence of regional subsidence
and tsunamis during four of Cascadia’s most recent plate-
boundary earthquakes. Two peat–mud contacts unblan-
keted by sand may record small coseismic relative sea-level
rises or local-to-regional rises unrelated to land-level
movements during earthquake deformation cycles.
Unless substantial postseismic uplift was too rapid

to be recorded, reconstruction of changes in land level
from marsh core samples using diatom and foraminiferal
transfer functions points to modest subsidence (0.470.2m)
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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during the four great earthquakes identified at Alsea Bay.
However, interpretation is complicated by the 30–38% of
potentially unreliable transfer function values from sam-
ples with poor analogs in modern diatom and foraminiferal
assemblages. Reconstructions of coseismic subsidence
using good-analog samples range from 0.4670.12 to
0.0970.20m showing greater variability than implied by
sample-specific function errors. Sampling at Alsea Bay is
too limited and transfer functions too imprecise to argue
for preseismic subsidence. These results emphasize the
importance of acquiring (1) large modern data sets that
sample the full range of tidal environments to improve the
performance of the transfer function, and (2) fossil analyses
from multiple sites in the same marsh—preferably using
multiple microfossil groups—for reconstructing land-level
movement during earthquake cycles.
Please cite this article as: Nelson, A.R., et al., Great-earthquake paleogeodesy
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Apparent high rates of postseismic uplift inferred from
the most reliable reconstructions at Alsea Bay suggest
uplift was almost as large as coseismic subsidence. The
uplift may result from slip on deep parts of the plate
boundary and (or) viscoelastic stress relaxation in the
upper plate.
Modest coseismic subsidence is inconsistent with wide

plate-boundary ruptures extending well inland of the coast.
Ruptures may have been long and narrow during earth-
quakes near M9, as suggested for the AD 1700 earthquake,
or of lower and more variable dimensions and magnitudes.
Partial, coseismic strain release could explain modest
subsidence during one or two of the four earthquake
cycles, but probably not during all. At least for the past
two millennia in central Oregon, the plate boundary
ruptured largely offshore.
and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast,
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