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BETWEEN EARTHQUAKES (interseismic)-Elastic Strain Accumulation DURING EARTHQUAKES (coseismic)-Earthquake Rupture Land Displacement 

Humboldt Bay area slowly rising Humboldt Bay area rapidly subsides

Upper Continental Plate
Shortening

Subducting Oceanic Plate

Seismogenically locked
Transition zone

Uplift

Humboldt Bay

A

Schematic diagrams showing the pattern of (A) interseismic and (B) cosesmic defor-
mation associated with a subduction thrust fault during an earthquake deformation 
cycle.  Modi�ed from Nelson, 1996; modi�ed from Dragert et al, 1994; and Geoma-
trix consultants, 1994

1) How tectonics in�uence relative sea level at the coast 

From: Nelson, 1996
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A)  Land level changes at the coast during two earthquake deformation cycles with 
di�erent amplitude
B)  Relative sea level (RSL) changes produced by the cycles  during a period of no 
change in regional sea level
C)  A gradual rise in regional sea level during the cycles that does not include short 
term or small scale changes in local and regional sea level
D)  RSL changes at the coast resulting from the sum of �gures B and C

3) How tectonic land level changes and sea level changes 
combine to determine relative sea level at the coast

Space-Time diagram illustrating the timing of identi�ed earthquake events 
along the coast of Northern California.  This data suggests an average  
recurrence interval of 260-380 years (depending on how you interpret the 
data) in the Eel River / South Bay areas with an obvious event or data gap in 
the Arcata Bay area. The last detected event was 1700 AD. O�shore 
paleoseismic data suggests an earthquake recurrence interval of 240 years 
and suggest there is a 80% chance in the next 50 years that we will experience 
a great earthquake in this region.  The reason for the age discrepancies  is 
likely either 1) onshore archival bias or 2) the threshold of detection di�ers 
between o�shore and terrestrial events.   
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Combining available survey data and water level data to
establish a meaningful baseline to monitor localized land
and/or sea level changes. 
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  The Humboldt Bay region is within the portion of the North American / Gorda lithosperic plate interface that it is subject to continued vertical land level changes throughout the seismic cycle.  
  In the Humboldt Bay region it is thought that the land subsides (relative to sea level) almost instantaneously during large earthquakes and then slowly, over decades to centuries, rises again as strain 
accumulates along the plate interface.  This process in�uences relative sea level independently and superimposed on eustatic sea level changes (changes from melting ice and heating of ocean water)   
  Recent studies suggest that there is a high probability that a great earthquake may occur within the design life of engineered structures and planning time frames of sea level modeling e�orts. 
  We suggest current planning and modeling e�orts should, as a �rst step, better understand:
  1) The  timing and average recurrence intervals of land subsidence generating earthquakes, and where we are temporaly in the seismic cycle.
  2) The magnitude of coseismic subsidence and the temporal distribution of regional interseismic land level changes.

2)  Timing of great earthquakes and tsunamis 
 in Northern California 
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4)  The Magnitude of coseismic subsidence
The magnitude of subsidence during an earthquake event in the Humboldt Bay region is not 
well constrained and is likely variable.   Reported subsidence events in coastal Oregon and 
Washington suggest a maximum value of 2 meters.  This topic is one of the least understood 
and most important to research when considering sea level monitoring in the Humboldt Bay 
area

5)  Future research and sea level modeling e�orts

5a 5b

Quantifying and incorporating all of the primary factors that 
drive future relative sea level, with objective uncertainty,  is the 
�rst step in developing models to predict and plan for future 
sea level changes.  Below are two potential starting points for 
analyzing future sea level trends:
Understanding and monitoring current relative sea level trends.
We suggest the installation of several new tide gauges with permanent real 
time GPS equipment installed adjacent to them. We should not rely solely on 
the tide gauge at the North Spit and IPCC reports to develop models of  sea 
level change in Humboldt Bay.  To the left is a �gure depicting existing and 
proposed survey and water level data collection sites.

Modeling the e�ects of future sea level trends
We suggest developing GIS models that include tectonically driven relative sea 
level changes  (�gures 5a and 5b).  These �gures demonstrate the e�ects of sea 
level change on various intertidal habitats.  Figure 5a shows current spatial dis-
tribution of intertidal habitats in the Manila vicinity.  Figure 5b shows the 
change in habitat distribution with the e�ects of 50 years of eustatic sea level 
change  and 1meter (a conservative estimate) of subsidence from a southern 
Cascadia subduction zone earthquake. We suggest a better understanding of 
the frequency and magnitude of coseismic subsidence is critical to planning for 
future sea level changes in the Humboldt Bay region.


